Friday, May 15, 2015

Oculus SDK 0.6.0 and Oculus Rift in Action

Oculus publicly released version 0.6 their SDK today.  This version represents the biggest change to the API since the first release of the C API in version 0.3, slightly over a year ago.  The new version simplifies the API in a number of ways:
  • Removed the distinction between direct and extended modes from the perspective of the developer  
  • Removes support for client-side distortion
  • Moves the management of the textures used for offscreen rendering from the client application to the SDK
  • Fixes a number of OpenGL limitations
  • etc, etc...

So those who have purchased or intend to purchase our book may be asking themselves what version we'll be covering exactly.

The short answer is that currently the book covers version 0.5 of the SDK (which itself is almost identical to version 0.4.4).  That isn't likely to change before print.  At this point we're well into the final stages of publication, doing final editorial passes for proofreading.  If we were to update to 0.6 we would have to go back and revise quite a few chapters and start much of that work over again.  That said, when we found out what a big change 0.6 was, there was much discussion, consideration and consternation.

However, with the public release of the SDK, there came a more compelling reason for us to stay with the version we're currently targeting.  In a recent blog post on the Oculus website, Atman Binstock stated...
Our development for OS X and Linux has been paused in order to focus on delivering a high quality consumer-level VR experience at launch across hardware, software, and content on Windows. We want to get back to development for OS X and Linux but we don’t have a timeline.
Since we started writing the book, we've felt very strongly about keeping a cross-platform focus.   While it's likely that most of the initial consumer demand for the Rift will be driven by gamers, we the authors feel that VR has a promising future beyond just the realms of gaming.  Two of the core components that make the Rift possible are powerful consumer graphics processors and cheap, accurate inertial measurement units (IMUs).  Much of the initial consumer demand for both of these technologies was driven by gaming, but in both cases the use of the technologies is spreading far beyond that.

We believe that VR will also grow beyond the confines of gaming, probably in ways we can't even imagine right now.  However, to do that, we need to make sure as many people as possible have the opportunity to try new ideas.  And while Macs and Linux machines may hold an almost insignificant market share when it comes to gaming, we believe that new ideas can be found anywhere and that innovators probably aren't divided proportionately in the same way that operating systems are.

So we were faced with a choice.  We could stick with the 0.5 SDK, which still functions with the new Oculus runtime (at least for the DK1 and DK2).  We could abandon Linux and Mac developers and switch to the 0.6 SDK.  Or we could try to cover both 0.6 and 0.5 in the book.  We chose the first option.

Now, if you're a Windows developer and you want to move to 0.6, we still want to support you.  To that end, we will have a branch of our Github examples that will keep up to date with the latest version of the SDK.

Additionally, we will try to cover the gaps between what the book teaches, and and the current version of the SDK with articles on this blog.  I'm not talking about errata, but something more like whole updated chapter sections.

We will also be working to create examples focused on other mechanisms of working with VR devices, such as the Razer OSVR and the HTC Vive, using the appropriate SDKs.

We also feel that there is a great deal of value in the book as it stands now that is outside of the low level SDK details.  In fact, to be honest, the bulk of the changes to the book would probably be in chapters 4 and 5, and there are a dozen chapters.

The point is, whatever platform you're on, whatever hardware you're working with, if you want to create a world, we want to help.  The forthcoming edition of Oculus Rift in Action is only the first step.

Monday, May 11, 2015

Book Update!

We are heading into the final stretch with our book Oculus Rift in Action.  All chapters are now complete and we are just about half-way through the final editing process. The book is available for pre-order from Amazon If you can't wait to get your hands on it, you can order directly from Manning Publications and get access to all chapters now through the Manning Early Access Program.

Thursday, April 2, 2015

Unity + Leap: Hand Selection UI Prototype

Immersion is definitely affected by how closely your avatar's hand looks like your own.  In the demo I am working on I want the user to be able to select the hands they have in the game before entering the game.  A prototype in-game UI for hand selection is seen in the video below.

To create this UI, I created a world space canvas and added buttons for each of the available hands. To each button, I added a box collider as a child object. A script attached to the box collider detects when a hand has collided with it.  To detect a hand, I used the Leap libraries and then checked to see if the collision object is a Leap HandModel.

In this prototype UI, I am using large buttons for two reasons. First, reading small text in the Rift can be difficult, and second, while using the Leap allows me to see my hands, in my experience, it does not track finger motion well enough for detailed interactions to be effective. In several of the tests I ran, the user's hand was generally in the right place but the fingers more often than not were at different angles than the user's actual hand. The effect was that my users seemed to have the fine motor skills of a toddler - they could reach out and touch everything but they didn't have a lot of control. On the positive side, when the user has hands in the game, it appears to be very natural for users to try to touch items with their hands. Even when users don't have visible hands in the scene, you'll often see them reaching out to try to touch things. While I have the start button say "Touch to Start," once users know to use their hand to affect the scene they get it right away and don't need prompting or other instruction.

Leap Motion has just released a "Best Practices Guide" and I'll be looking at incorporating many of the ideas documented there in future prototypes.

Tuesday, March 24, 2015

Unity: Mac Direct to Rift Plugin by AltspaceVR

When using the Rift on a Mac, Oculus recommends using extended mode for the monitor configuration as it provides better performance.  And while performance is indeed much better in extended mode (running the Tuscany demo in extended mode I get 75 FPS and in mirrored mode with the refresh rate set to 75 hertz I was get 46 FPS and with the refresh rate set to 60 I get 60 FPS), getting the app to run on the extended portion of the desktop can be a bit of a pain

To help provide a better Mac user experience, the folks at AltspaceVR have created a plugin that can be integrated into your Unity project so that your application can be launched seamlessly on to the Rift when using a Mac. They have kindly made this project available on github.

Friday, March 6, 2015

Quick Look: Unity 5 and the Oculus Unity 4 Integration Package 0.4.4

I downloaded Unity 5 yesterday and gave it a quick trial run with the Oculus Integration Package 0.4.4 for the DK2. To test it out, I first built a quick sample scene using assets found in the Unity standard asset packages. Using that scene, I then tried two methods for getting the scene onto the Rift:
  • Using the OVRPlayerController prefab 
  • Using the First Person Controller prefabs and scripts found in the Unity Standard Assets with the OVRCameraRig prefab
Here’s how those experiments went.

Creating the sample scene

I created a similar sample scene to the one I’ve been using for previous tests - a beach scene using only Unity standard assets. Unity 5 includes a significant refresh of the standard asset packages which is very cool. And nicely for me, they still include palm trees and a sand texture. One change of note is that skyboxes are now set in Window ->Lighting instead of Edit -> Render Settings. Unity 5 comes with a single default skybox which is what I used in this scene. Unity 5 doesn’t include a skyboxes standard asset package, at least not that I found. I did try using the SunnySky box material from the skyboxes package in 4.6 but it does not render nicely.
Beach scene created using Unity 5 standard assets 
Notice how  much prettier the palm trees are compared to the 4.6 assets.

Now to get the scene running in the Rift.

Using OVRPlayerController

After downloading and importing the Unity 4 Integration Package 0.4.4, the first thing I tried was just dropping the OVRPlayerController prefab into the scene. The OVRPlayerController character height is 2, so when placing the prefab in the scene I made sure to set the Y value to 1 so it was not colliding with the beach plane. And unlike 4.6, the palm tree assets have colliders attached, so I also made sure my player was placed so that it was not colliding with a palm tree.*

However, before I could build the scene, I needed to address the two errors I was getting:

Assets/OVR/Scripts/Util/OVRMainMenu.cs(250,43): error CS0117: `UnityEngine.RenderMode' does not contain a definition for `World'
Assets/OVR/Scripts/Util/OVRMainMenu.cs(969,43): error CS0117: `UnityEngine.RenderMode' does not contain a definition for `World

To get the scene to build, I edited OVRMainMenu.cs and changed:

c.renderMode = RenderMode.World;

c.renderMode = RenderMode.WorldSpace;

in the two places where that line occurs. With that done, I was a able to build and run the scene on the DK 2.

Beach scene on the Rift

Running this on a MacBook Pro in mirrored mode I was seeing 60 or so FPS, and in extended mode around 75.

*Actually, I didn’t make sure of that on the first test and at the start of the scene the collision caused the scene to jitter around and it was very unpleasant.

Using the OVRCameraRig with the first person character controller prefabs from the standard assets

My next test was to try to use the OVRCameraRig prefab with the first person character controller from the standard assets. This did not go as well.  With 5.0, there are two First Person Player prefabs: FPSController and RigidbodyFPSController.

The FPSController prefab

The FPSController prefab uses the FirstPersonController.cs script. This script has a number of options, including footstep sounds, head bob and FOV Kick. These options can be great in traditional games but for VR, they can be rather problematic. Head bob and FOV Kick are particularly concerning as these types of motion can be severe motion sickness triggers for some user. Based on that, I didn’t want to spend too much time trying to adapt this script. Instead, I looked at the RigidBodyFPSController.


The RigidBodyFPSController prefab consists of the RigidBodyFPSController object with the MainCamera as a child object.

Looking a the RigidBodyFPSController object, you can see that it has a RigidBody, a Capsule Collider and the Rigidbody first person controller script.

To adapt this prefab for use in VR, I first deleted the MainCamera child object and then added the OVRCameraRig in its place.

Note: The MainCamera had a headbob.cs script attached to it. Head bob isn’t something I want in my VR application, and the documentation says that script can be safely disabled or removed.

The Rigidbody First Person Controller script’s Cam variable had been set to the MainCamera. With the MainCamera removed, in the inspector for the script I set it to LeftEyeAnchor.

I then gave the it a test run.

I was seeing similar FPS as in the OVRPlayerController test but the scene was noticeably more jittery. This may be due to using LeftEyeAnchor as the camera but it would require more research to know what is really going on.

Update: March 30, 2015
The build errors appear to be fixed in the Beta version of the Integration Package. When using you need  make sure you have updated to the Beta version of the Runtime Package for it to work. I was not able to build my project until I had updated the Runtime Package as well.

Friday, February 13, 2015

A look a the Leap Motion: Seeing your hands in VR

In many VR demos you are just a floating head in space. For me, this breaks the immersion as it makes me feel like I am not really part of the virtual world. Demos that include a body feel more immersive, but they are also a bit frustrating. I want my avatar’s hands to move when my hands do. To experiment with getting my hands into the scene, I got a Leap Motion controller.

When using the Leap with the Rift, you need to mount it on the Rift itself using a small plastic bracket. You can purchase the bracket from Leap but they also make the model available  on Thingiverse so you can print one out yourself should you have a 3D printer. (I do and I thought that was very cool. I really felt like I was living in the future printing out a part for my VR system.)

Once I got the mount printed out and attached to my Rift and completed the Leap setup instructions, I gave some of the VR demos available a try. Seeing hands in the scene really made it feel a lot more immersive, but what really upped the immersion was seeing hands that looked almost like mine. The leap development package includes a nice variety of hand models (by their naming conventions, I’m a light salt) and that variety is greatly appreciated.

When running the demos, the biggest problems I had with the Leap were false positive hands (extra hands) in the scene, having my hands disappear rather suddenly, and poor tracking of my fingers. Two things that helped were making sure  the Rift cables were  not in front of the Leap controller and removing or covering reflective surfaces in my office (particularly the arm rest on my chair). Even with those changes, having the perfect office setup for the Leap is still a work in progress.

I’ve downloaded the Unity core assets and I’ll be talking more about developing for the Leap using Unity in future posts. Here’s a preview of what I am working on:

Wednesday, February 4, 2015

Unity 4.6: Silent conversation - Detecting head gestures for yes and no

One of the demos that I have really enjoyed is the “Trial of the Rift Drifter” by Aldin Dynamics. In this demo you answer questions by shaking your head for yes and no. This is a great use of the head tracker data beyond changing the user’s point of view. And it is a mechanic that I would like to add to my own applications as it really adds to the immersive feel.

As an example, I updated the thought bubbles scene I created earlier to allow a silent conversation with one of the people in the scene and this blog post will cover exactly what I did.

In my scene, I used a world-space canvas to create the thought bubble. This canvas contains a canvas group (ThoughtBubble) which contains an image UI object and a text UI object.

Hierarchy of the world space canvas  
I wanted the text in this canvas to change in response to the user shaking their head yes or no. I looked at a couple of different ways of detecting nods and head shakes, but ultimately went with a solution based on this project by Katsuomi Kobayashi.

To use the gesture recognition solution from this project in my own project, I first added the two Rift Gesture files (RiftGesture.cs and MyMath.cs) to my project and then attached the RiftGesture.cs script to the ThoughtBubble.

When you look at RiftGesture.cs, there are two things to take note of. First, you’ll see that to get the head orientation data, it uses:

OVRPose pose = OVRManager.display.GetHeadPose();
Quaternion q = pose.orientation;

This gets the head pose data from the Rift independent of any other input. When I first looked at adding head gestures, I tried using the transform from one of the cameras on the logic that the camera transform follows the head pose. Using the camera transform turned out to be problematic because the transform can also be affected by input from devices other than the head set (keyboard, mouse, gamepad) resulting in detecting a headshake when the user rotated the avatar using the mouse rather than shaking their head. By using OVRManager.display.GetHeadPose(), it ensures you are only evaluating data from the headset itself.

Second, you will also notice that it uses SendMessage in DetectNod() when a nod has been detected:

SendMessage("TriggerYes", SendMessageOptions.DontRequireReceiver);

and in DetectHeadshake() when a headshake has been detected:

SendMessage("TriggerNo", SendMessageOptions.DontRequireReceiver);

The next step I took was to create a new script (conversation.cs) to handle the conversation. This script contains a bit of setup to get and update the text in the canvas and to make sure that the dialog is visible to the user before it changes. (The canvas groups visibility is set by canvas groups alpha property.) However, most importantly, this script contains the TriggerYes() and TriggerNo() functions that receive the messages sent from the RiftGesture.cs. These functions simply update the text when a nod or headshake message has been received. I attached the conversation.cs script to the ThoughtBubble object and dragged the text object from the canvas to the questionholder so that the script would know which text to update.

Scripts attached to the ThoughtBubble canvas group

At this point I was able to build and test my scene and have a quick telepathic conversation with one of the characters.